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Abstract
Central to many discussion of decoherence is a master equation for the
reduced density matrix of a massive particle experiencing scattering from its
surrounding environment, such as that of Joos and Zeh. Such master equations
enjoy a close relationship with spontaneous localization models, like the GRW
model. The aim of this paper is to present two derivations of the master
equation. The first derivation is a pedagogical model designed to illustrate
the origins of the master equation as simply as possible, focusing on physical
principles and without the complications of S-matrix theory. This derivation
may serve as a useful tutorial example for students attempting to learn this
subject area. The second is the opposite: a very general derivation using
non-relativistic many-body field theory. It reduces to the equation of the
type given by Joos and Zeh in the one-particle sector, but correcting certain
numerical factors which have recently become significant in connection with
experimental tests of decoherence. This master equation also emphasizes the
role of local number density as the ‘preferred basis’ for decoherence in this
model.

PACS numbers: 03.65.−w, 03.65.Yz, 03.65.Ta, 05.70.Ln

1. Introduction

Non-unitary master equations for a density matrix arise in both continuous state localization
models, such as GRW theory [1], and in decoherence calculations in standard quantum
theory. They differ, however, in their underlying physical pictures. GRW theory involves an
explicitly modified dynamics in the Schrödinger equation. Standard decoherence calculations,
by contrast, employ the usual Schrödinger dynamics for a system coupled to its environment,
but this becomes a non-unitary dynamics for the reduced density matrix once the environment
is traced out. These similarities and differences were discussed shortly after the appearance
of GRW theory twenty years ago [2, 3], but there is surely still more to learn in this area.
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It is a great pleasure to have the opportunity to contribute to this volume in honour of the 70th
birthday of GianCarlo Ghirardi.

This paper concerns master equations in standard quantum mechanics of the type used in
decoherence studies, obtained by coupling a point particle by some kind of environment. A
simple example of such a master equation in one dimension is

∂ρ

∂t
= ih̄

2M

(
∂2ρ

∂x2
− ∂2ρ

∂y2

)
− D(x − y)2ρ. (1.1)

This describes quantum Brownian motion for a free particle of mass M in the limit of negligible
dissipation. This is the one-dimensional version of an equation first obtained by Joos and
Zeh [4] (in the limit of small |x − y|), which involves a massive free particle undergoing
scatterings by an environment of much lighter particles. Many other derivations of this and
similar equations have since been given [5–10]. This equation can also arise for the case of
a point particle linearly coupled to a thermal bath of harmonic oscillators, and this model
also has been the subject of many papers [11–13]. Models involving fields have also been
considered [14–16]. (The literature on quantum Brownian motion is considerable so only a
selection is mentioned here. See also [17].)

A key reference point in these studies is the Lindblad form of the master equation [18],
which is the most general possible form a master equation can take under the assumption that
the evolution is Markovian (a condition well satisfied in a wide variety of interesting models).
The Lindblad master equation is

dρ

dt
= −i[H, ρ] − 1

2

n∑
j=1

({
L

†
jLj , ρ

} − 2LjρL
†
j

)
. (1.2)

Here, H is the Hamiltonian of the distinguished subsystem (sometimes modified by terms
depending on the Lj ) and the n operators Lj model the effects of the environment. For example,
the master equation of one-dimensional quantum Brownian motion, including dissipation, is
of the Lindblad form with a single Lindblad operator

L =
(

4MγkT

h̄2

) 1
2

x + i
( γ

2MkT

) 1
2
p (1.3)

as described in [19, 20]. (This reproduces equation (1.1) for small γ with D = 2MγkT/h̄2).
Equation (1.1) describes the decoherence process in which an arbitrary initial density

matrix becomes approximately diagonal in position on a very short timescale. This process is
thought to be a key element in understanding how classical behaviour emerges from quantum
theory [21–23]. Recent experiments have been able to actually observe the rate of the
decoherence process [24], which is connected to the constant D in equation (1.1). It turns out
that some of the original derivations of the master equation led to incorrect values of D. More
recent derivations [8, 14] have corrected these errors and produced the values of D compatible
with experiments. (See also [25, 26].)

The purpose of this paper is to present two derivations of a class of master equations of
the form equation (1.1) and its generalizations.

The first derivation, described in sections 2 and 3, is a simple pedagogical model,
designed to illustrate the way in which the general form of equation (1.1) follows from
some simple physical ideas. We therefore avoid the technical complications and sometimes
non-transparent mathematical assumptions involved in these models, but make no claims
about making physically accurate predictions. (This model is similar to that presented by Joos
et al [27].)
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The second derivation, described in sections 4, 5 and 6, is a very general derivation of a
class of master equations and makes use of non-relativistic many-body field theory. It reduces,
in form, to an equation of the type given by Joos and Zeh and others, but with a correct value
of the decoherence rate that is compatible with experiments. This derivation is also relevant
to another issue in decoherence theory, which is the question of the ‘preferred basis’—the
natural basis in which interferences are destroyed. In the master equation (1.1), it is clearly
the interferences between different values of position that are initially suppressed, so that
position is the preferred basis. More generally, it is known that under evolution according to
the Lindblad form equation (1.2), it is the Lindblad operators Lj that defined the preferred
basis (at least in simple models) [28]. We will see in the many-body field theory model that
most generally in system-environment models, local number density is the preferred basis
(with position emerging as a special case of this in the one-particle sector). The special role
of number density also echoes certain aspects of the GRW model [1]. Furthermore, local
densities are thought to play a key role in the most general possible derivations of emergent
classicality, even when there is no environment present [23, 29]

The many-body field theory derivation of the master equation first appeared, in essence, in
[14], as a part of a wider investigation into the properties of the decoherent histories approach
to quantum theory [30–34]. Here, it is presented on its own merits as a contribution to the
theory of quantum Brownian motion.

2. A simple model

To set the context, we first briefly recall the basic ideas involved in decoherence. It is
generally held that the emergence of classical behaviour for simple particle systems may
take place when the system density matrix evolves from an initial pure state to a mixed state
which is approximately diagonal in both position and momentum. This, loosely speaking,
is what is meant by decoherence. Unitary evolution alone cannot produce such a transition,
so it is necessary to consider a larger ‘universe’ consisting of the original system coupled to
its surrounding environment. If the interactions between system and environment generate
entanglement, then the reduced density matrix of the system only can evolve non-unitarily and
produce the desired decoherence.

Turning to our specific model, we consider a system consisting of a particle in one
dimension which interacts through occasional collisions with an environment consisting of
gas of light particles. Except for the collisions, which are assumed to be very brief, the
particles evolve freely. By considering the change in the system density matrix during these
collisions we will derive the form of the decoherence term (the last term) in equation (1.1).

We first consider the collision process classically. Suppose the system particle has
momentum P and mass M and a particle from the environment has momentum p and mass m.
We will assume that the collision conserves both energy and momentum. If the final momenta
are P ′ and p′, we therefore have

P 2

2M
+

p2

2m
= P ′2

2M
+

p′2

2m
(2.1)

P + p = P ′ + p′. (2.2)

Ignoring the trivial solution P = P ′ and p = p′, the final momenta are given by

P ′ = (M − m)

(M + m)
P +

2M

(M + m)
p (2.3)
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≡ aP + bp (2.4)

p′ = 2m

(M + m)
P − (M − m)

(M + m)
p (2.5)

≡ cP − ap, (2.6)

(where the coefficients a, b, c are read off from equations (2.3), (2.5)). It is now very useful
to make two approximations. We first assume that the environment particles are much lighter
than the system particles:

m � M. (2.7)

Second, we assume that the speed of the system particle is much smaller than the speed of
environment particles,

P

M
� p

m
, (2.8)

(although the momenta P and p may be comparable in size). These approximations imply that
the momenta after the collision are given by the much simpler expressions

P ′ ≈ P + 2p (2.9)

p′ ≈ −p (2.10)

Turn now to the quantum case. We will make the reasonable assumption that energy and
momentum are also conserved by the quantum description of the collision. The key idea in
the quantum case is to work with states of definite momentum (plane wave states) and use the
above results to deduce how they change during a collision. We will eventually also need to
assume something about the locality of the interaction, but that will not be needed just yet.

Introducing the positions (x, q) of the system and environment particles, it follows from
equations (2.9), (2.10) that an initial plane wave for the total system changes according to

e
i
h̄
P x e

i
h̄
pq → e

i
h̄
(P +2p)x e− i

h̄
pq (2.11)

= e
i
h̄
P x e

i
h̄
p(2x−q) (2.12)

(in the approximations described above). Or, in configuration space, the effect of the collision
is to make the replacement

x → x (2.13)

q → 2x − q (2.14)

Since the plane waves are a complete set of states, this result determines the effects of a
collision on any initial state.

We suppose that the initial density matrix of the whole system is a simple product state,
ρ(x, y)ρE (q, q ′). As a result of a single collision, equations (2.13), (2.14) imply that the total
density matrix changes according to

ρ(x, y)ρE (q, q ′) → ρ(x, y)ρE (2x − q, 2y − q ′). (2.15)

Hence, the collision causes the system and environment to become entangled, as required for
decoherence.
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Tracing over the environment, we find that the density operator of the system only evolves
according to

ρ(x, y) → ρ(x, y)

∫
dq ρE(2x − q, 2y − q). (2.16)

We suppose that the collisions take place at a rate � per unit time. The total change in the
density matrix of the system during a small time interval �t is therefore given by

�ρ(x, y) = −�tF(x, y)ρ(x, y), (2.17)

where

F(x, y) = �

(
1 −

∫
dq ρE(2x − q, 2y − q)

)
. (2.18)

This is also usefully written as

F(x, y) = �Tr
(
(1 − e2 i

h̄
(x−y)p̂)ρ̂E

)
, (2.19)

where p̂ is the momentum operator on the environment and the trace is over a complete set of
environment states. It follows that the master equation is

∂ρ

∂t
= ih̄

2M

(
∂2ρ

∂x2
− ∂2ρ

∂y2

)
− F(x, y)ρ. (2.20)

In the small |x − y| limit we have

F(x, y) = 2�〈p̂2〉
h̄2 (x − y)2, (2.21)

where we have assumed that the environment state is such that 〈p̂〉 = 0. For a thermal
environment state we have

〈p̂2〉 = mkT, (2.22)

so we obtain a master equation of the form equation (1.1) with D = 2m�kT/h̄2.
We have therefore obtained the expected form of the master equation, using energy and

momentum conservation, together with the approximations that the environment particles are
much lighter and faster than the system particle.

A slightly different but simpler model along these lines was given by Joos et al [27].
Their model postulates a simple dynamics involving a particle being subject to random kicks,
but without relating it to a collision process with energy and momentum conservation as here.

3. A Wigner function derivation including dissipation

It is now useful to give a more detailed derivation of the master equation in this simple model
using the Wigner representation. We go beyond the approximations used above and work
to leading order in m/M . This derivation shows how the dissipative terms arise and also
establishes the connection between the collision rate � and the dissipation γ , hence connects
microscopic and macroscopic parameters.

The Wigner function of the density matrix ρ(x, y) of a one-dimensional systems is defined
by

W(p, q) = 1

2πh̄

∫
dξ e− i

h̄
pξ ρ

(
q +

1

2
ξ, q − 1

2
ξ

)
(3.1)

together with its inverse

ρ(x, y) =
∫

dp e
i
h̄
p(x−y)W

(
p,

x + y

2

)
. (3.2)
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The Wigner function has the properties∫
dpW(p, q) = ρ(q, q) (3.3)

∫
dqW(p, q) = ρ̃(p, p), (3.4)

where ρ̃ is the Fourier transform of ρ(x, y), so W contains the usual position and momentum
probabilities as its marginal distributions. The Wigner function is the closest thing quantum
mechanics has to a phase space probability distribution function but narrowly fails since W

is not always positive. Its time evolution is identical to classical evolution for linear systems,
with corrections proportional to powers of h̄2 for nonlinear potentials. It is therefore a very
useful tool for discussing the connection between quantum and classical systems, although
note that there are subtle differences between the Wigner function and a classical distribution
function, as we shall see shortly. (See [35] for properties of the Wigner function.)

In the absence of interactions, the two-particle Wigner function W2(P,X, p, q) obeys the
equation

∂W2

∂t
= − P

M

∂W2

∂X
− p

m

∂W2

∂q
, (3.5)

and this corresponds to unitary evolution of the density matrix. We need to find terms
representing the collision to add to the right-hand side, using an argument along the lines
of that used in the previous section for the density matrix. We again consider the collision
process described by equations (2.4), (2.6) and look for the change in the Wigner function.

If W were a classical distribution function, it would be sufficient to consider only the
momentum transfer described by equations (2.4), (2.6). In the Wigner function, however,
things are a bit more subtle. If equations (2.4), (2.6) describe a process in the momentum
representation of a quantum system, then there is a corresponding transformation in position
space. Proceeding along lines identical to the derivation of equations (2.13), (2.14), it is easy
to see that this transformation is

X → aX + cq = X + c(q − X) (3.6)

q → bX − aq = 2X − q + c(q − X). (3.7)

That is, the collision process in the Wigner function involves both the transformation
equations (2.4), (2.6) on the momenta together with the transformation equations (3.6), (3.7)
on the positions. This must be the case because on integrating out the momenta in the
Wigner function, the correct distributions for position must be obtained and vice versa (as in
equations (3.3), (3.4)).

Denoting the system Wigner function by W(P,X) and the environment Wigner function
by WE(p, q), the above discussion implies that the effect of a collision is to produce the
transition

W(P,X)WE (p, q) → W(aP + bp, aX + cq)WE(cP − ap, bX − aq) (3.8)

in the two-particle Wigner function. However, in this derivation it turns out that it is also
important to incorporate the fact that the interaction is local, that is, it is described by a
potential of the form V (x − q) which decays for large |x − q|. In a more complete derivation,
this would be accomplished by multiplying equation (3.8) by a function of X − q which is
concentrated around X = q. However, in the interests of keeping the derivation heuristic,
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we will incorporate this ‘by hand’, by assuming that terms of the form |q − X| are small in
some sense. Since the constant c is also small (of order m/M), the most minimal and natural
implementation of locality is to simply drop the terms c(q − X) in equations (3.6), (3.7).

Integrating out the environment, and considering � collisions per unit time, we now have
that the evolution equation of the system Wigner function is

∂W

∂t
= − P

M

∂W

∂X
+ �

∫
dp dq[W(aP + bp,X)WE(cP − ap, 2X − q)

−W(P,X)WE (p, q)], (3.9)

which is a Boltzmann equation. Using some simple changes of variable for p and q in the first
term, this is easily rewritten,

∂W

∂t
= − P

M

∂W

∂X
+ �

∫
dp dq

[
1

a
W

(
P

a
− b

a
p,X

)
− W(P,X)

]
WE(p, q). (3.10)

(From this form we see that the position coordinates in the Wigner function are, in the end,
effectively unchanged as a result of the collision, despite the argument above; but this is due
to the approximation of dropping terms proportional to c(q − X)).

We again assume that the environment is in a thermal state at temperature T. To obtain
the more familiar form of the equation, we will assume that W is slowly varying in P so that
it may be expanded in derivatives. We will also take m � M and look for the leading-order
terms in m/M , so we have that

1

a
= M + m

M − m
≈ 1 +

2m

M
. (3.11)

We thus obtain

∂W

∂t
= − P

M

∂W

∂X
+ �

(
2m

M
W +

2m

M
P

∂W

∂P
+

1

2

(
b

a

)2

〈p2〉∂
2W

∂P 2

)
, (3.12)

where we have dropped terms of order m2/M2 and terms involving higher derivatives of W .
Now we note that it is appropriate to identify the dissipation γ as

γ = m

M
�, (3.13)

hence we make a connection between the collision rate and the dissipation. Since b/a ≈ 2 to
leading order and 〈p2〉 = 2mkT , we finally obtain the result

∂W

∂t
= − P

M

∂W

∂X
+ 2γ

∂(PW)

∂P
+ 2MγkT

∂2W

∂P 2
. (3.14)

This is the expected Wigner equation for a system undergoing quantum Brownian motion
including dissipation. As is well known, this equation describes the approach to thermal
equilibrium. Inverting the Wigner transform, the corresponding density matrix equation is

∂ρ

∂t
= ih̄

2M

(
∂2ρ

∂x2
− ∂2ρ

∂y2

)
− ih̄γ (x − y)

(
∂ρ

∂x
− ∂ρ

∂y

)
− 2MγkT

h̄2 (x − y)2ρ. (3.15)

Although often given as the master equation for quantum Brownian motion with dissipation
[11], this equation is not in fact of the Lindblad form equation (1.2) and actually suffers from
a possible small positivity violation [36, 37]. However, it can easily be modified into the
Lindblad form equation (1.2) with Lindblad operator equation (1.3) by addition of a term with
coefficient proportional to 1/T , so the difference is negligible for high temperatures.

In summary, we obtain the master equation (3.9) with dissipation using momentum and
energy conservation to describe the collision, and taking leading and first-order terms in order
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m/M together with a simple approximation to incorporate the locality of the interaction.
The familiar form equations (3.14), (3.15) are obtained using the further assumption that the
Wigner function is a slowly varying function of P (which, in the density matrix, corresponds
to exploring the region of small |x − y|).

4. Many-body field theory

We now turn to the second derivation of the master equation, using many-body field theory.
This section is based on [14]. We begin by briefly reviewing the formalism [38, 39]. We
consider a set of non-relativistic system particles described by a field ψ(x) interacting through
a potential φ(x) with an environment described by a field χ(x). The total system is described
by the Hamiltonian

H =
∫

d3x

(
1

2M
∇ψ †(x) · ∇ψ(x) +

1

2m
∇χ †(x) · ∇χ(x)

)

+
1

2

∫
d3x d3x ′ψ †(x)ψ(x′)φ(x − x′)χ †(x′)χ(x). (4.1)

(For simplicity we set h̄ = 1 hereafter.) In this language, the number densities N(x) and n(x)

of the system and environment fields are

N(x) = ψ †(x)ψ(x) (4.2)

n(x) = χ †(x)χ(x). (4.3)

The above relations are also more conveniently written in terms of ak and bk, the
annihilation operators for the system and environment, respectively, and the Hamiltonian
then is

H =
∑

q

(
Eqa

†
qaq + ωqb

†
qbq

)
+

1

2V

∑
k′

1+k′
2=k1+k2

ν(k′
2 − k2)a

†
k1

b
†
k2

ak′
1
bk′

2
, (4.4)

where Eq = q2/2M,ωq = q2/2m,V is the spatial volume of the system (which we assume
is in a box) and

ν(k) =
∫

d3x e−ik · xφ(x). (4.5)

The Fourier transformed number densities are

Nk =
∑

q

a†
qaq+k (4.6)

nk =
∑

q

b†
qbq+k, (4.7)

and one may see that the Hamiltonian has the more concise form

H =
∑

q

(
Eqa

†
qaq + ωqb

†
qbq

)
+

1

2V

∑
k

ν(k)Nkn−k (4.8)

= H0 + Hint. (4.9)

From these relations, we see that the environment couples to the number density of the system.
It is this feature of many-body field theory that makes it the appropriate medium for the
derivation of the master equation emphasizing the role of number density.
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The S-matrix is

S = T exp

(
−i

∫ ∞

−∞
dtHint(t)

)
, (4.10)

where

Hint(t) = 1

2V

∑
k

ν(k)Nk(t)n−k(t) (4.11)

and here

Nk(t) =
∑

q

a†
qaq+k ei(Eq−Eq+k)t (4.12)

nk(t) =
∑

q

b†
qbq+k ei(ωq−ωq+k)t . (4.13)

It is enlightening to look at a simple scattering situation to determine how the environment
stores information about the system (which in turn determines the preferred basis). Suppose,
for simplicity, that the distinguished system is classical and consider what happens when the
environment scatters off it. Suppose the environment starts in an initial momentum state |k0〉
and scatters into a final state |kf 〉. The scattering amplitude for this process, to first order, is

〈kf |S|k0〉 = i

2V

∫ ∞

−∞
dt

∑
k

ν(k)Nk(t)〈kf |n−k(t)|k0〉

= i

2V
ν(k)

∫
dtNk(t) ei(ωkf

−ωk0 )t
, (4.14)

where k = kf −k0. This simple result shows that a single scattering event by the environment
stores information about the Fourier transform (in space and time) of the number density.
It is in this sense that the number density has a preferred status—this is the variable that is
measured most directly by the environment. (An analogous result holds in linear oscillator
models [40].)

The measured variables above are of course non-local in time, involving a temporal
Fourier transform of the number density, so cannot, in fact, be compatible with a Markovian
master equation of the Lindblad form. Under a reasonable slow motion assumption, the
system timescale is much slower than the environment timescale, and we may ignore the time
dependence in Nk(t), yielding

〈kf |S|k0〉 = i

2V
ν(k)Nkδ(ωkf

− ωk0). (4.15)

This corresponds more directly to a Markovian master equation, as we shall see.

5. Derivation of the master equation

Following the method first used by Joos and Zeh [4], we may derive the master equation for
the reduced density operator ρ of the system by considering the scattering of the environment
off the system, to second order in interactions. We assume that the system and environment
are initially uncorrelated, so the total density operator is

ρT = ρ0 ⊗ ρE . (5.1)

We also assume that each scattering event takes place on a timescale which is extremely short
compared to the timescale of system dynamics. This means that in an interval of time �t

which is long for the environment but short for the system, we may write

ρT (t + �t) = SρT (t)S†, (5.2)
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(where we are using the interaction picture). Expanding (5.2) to second order, the S-matrix
may be written as

S = 1 + iU1 − U2, (5.3)

where

U1 = −
∫ ∞

−∞
dtHint(t) (5.4)

and

U2 = 1

2

∫
dt1

∫
dt2 T(Hint(t1)Hint(t2)). (5.5)

The requirement of unitarity, S−1 = S†, implies that U1 = U
†
1 and

U2 + U
†
2 = U 2

1 . (5.6)

We will therefore write

U2 = 1
2U 2

1 + iB, (5.7)

where B = B†, so we now have

S = 1 + i(U1 − B) − 1
2U 2

1 . (5.8)

Inserting this in (5.2), we obtain

dρT

dt
�t = i[U1 − B, ρT ] + U1ρT U1 − 1

2
U 2

1 ρT − 1

2
ρT U 2

1 . (5.9)

We now trace equation (5.9) over the environment to obtain the master equation for the system
density operator ρ. As is usual in this sort of model, we assume that the environment is so large
that its state is essentially unaffected by the interaction with the system. Since the total density
operator starts out in the factored state (5.1), this then means that, to a good approximation, ρT

persists in the approximately factored form ρ ⊗ ρE , and we may insert this on the right-hand
side of equation (5.9) [41]. We thus obtain the preliminary form for the master equation

dρ

dt
�t = i[TrE(U1ρE) − TrE(BρE), ρ] + TrE

(
U1ρT U1 − 1

2
U 2

1 ρT − 1

2
ρT U 2

1

)
. (5.10)

We now work out these terms in more detail. We will employ the simple but useful slow
motion approximation, in which we ignore the time dependence of Nk(t). (Corrections to this
approximation are considered in [14].) This implies that

U1 ≈ − 1

2V

∑
k

ν(k)Nk

∑
q

b†
qbq−k2πδ(ωq − ωq−k). (5.11)

The important terms for decoherence are the final three terms on the right-hand side of (5.11).
When traced, these give

TrE

(
U1ρT U1 − 1

2
U 2

1 ρT − 1

2
ρT U 2

1

)
=

∑
kk′

c(k, k′)
(

Nk′ρNk − 1

2
NkNk′ρ − 1

2
ρNkNk′

)
,

(5.12)

where

c(k, k′) = ν(k)ν(k′)
∑
qq′

δ(ωq − ωq−k)δ(ωq′ − ωq′−k′)
〈
b†

qbq−kb
†
q′bq′−k′

〉
E . (5.13)
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We will take the environment to be a thermal state, which is diagonal in the momentum states.
It follows that 〈

b†
qbq−kb

†
q′bq′−k′

〉
E ∝ δq,q′−k′δq′,q−k. (5.14)

This implies k = −k′, and also that the two delta functions are the same in equation (5.13).
We then interpret the square of the delta function in the usual way,

[δ(ωq − ωq−k)]
2 = δ(0)δ(ωq − ωq−k)

= �t

2π
δ(ωq − ωq−k). (5.15)

We now have

c(k, k′) = δk,−k′c(k)
�t

2π
, (5.16)

where

c(k) = 1

2π
|ν(k)|2

∑
q

δ(ωq − ωq−k)
〈
b†

qbq−kb
†
q−kbq

〉
E

= 1

2π
|ν(k)|2

∑
q

δ(ωq − ωq−k)
〈
b†

qbq
〉
E
(〈
b
†
q−kbq−k

〉
E + 1

)
. (5.17)

The terms involving environment averages have the usual thermal form (for a bosonic
environment)

〈
b†

qbq
〉
E = 1

eβ(ωq−µ) − 1
, (5.18)

where β = 1/kT , with T temperature, and µ is the chemical potential.
The form equation (5.16) means that the important terms in the master equation are of the

Lindblad form,

TrE

(
U1ρT U1 − 1

2
U 2

1 ρT − 1

2
ρT U 2

1

)
= �t

∑
k

c(k)

(
NkρN

†
k − 1

2
N

†
kNkρ − 1

2
ρN

†
kNk

)
,

(5.19)

where we have used the fact that N
†
k = N−k. The remaining two terms in equation (5.10)

clearly just modify the unitary dynamics of the system. First we have

TrE(U1ρE) = 1

2V

∑
k

ν(k)Nk

∑
q

〈
b†

qbq−k
〉
E2πδ(ωq − ωq−k). (5.20)

Clearly, from the term
〈
b
†
qbq−k

〉
E , this expression will be zero unless k = 0, and therefore it

is proportional to N, the total particle number operator (although the overall coefficient will
need to be regularized). This therefore contributes a term to the master equation of the form
[N, ρ]. We assume that there is a fixed number of system particles so it is reasonable to take
this term to be zero.

The other remaining term in equation (5.10) involves the time-ordering terms in U2 and
is a bit more complicated to evaluate. Fortunately, the detailed form of this expression is not
needed here, and it can in fact be easily shown that this term has the form

TrE(BρE) = �t
∑

k

d(k)NkN
†
k (5.21)
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for some coefficient d(k) which we will not need. Inserting all these results in equation (5.10),
the factors of �t all drop out, and we obtain, in the Schrödinger picture,

dρ

dt
= −i

[
H0 −

∑
k

d(k)NkN
†
k, ρ

]
+

∑
k

c(k)

(
NkρN

†
k − 1

2
N

†
kNkρ − 1

2
ρN

†
kNk

)
. (5.22)

As desired, this is the Lindblad form with the Lindblad operators given by

Lk = c
1
2 (k)Nk. (5.23)

We have therefore produced a derivation of the master equation for a scattering environment
which shows very clearly the key role of local number density as the preferred basis, as
indicated by the simple scattering calculation, equation (4.15).

It is interesting to note that the decoherence effect is second order in interactions, but
we were able to anticipate it from the simple first-order calculation, equation (4.15). The
reason for this is the relationship equation (5.7), which shows that the important part of the
second-order terms is the square of the first-order terms, and this is a consequence of unitarity.

6. Comparison with previous works

It is now important to check that the master equation we have derived reproduces known results
when we restrict to the one-particle sector for the system, where a number of derivations
have been given in a quantum mechanical framework [4–8]. In the one-particle sector, we
may work with a density matrix ρ(k, k′) = 〈k|ρ|k′〉, or equivalently ρ(x, y) in the position
representation. We use the relations[

Nq, a
†
k

] = a
†
k−q (6.1)

[Nq, ak] = −ak+q. (6.2)

These relations imply that

Nqρ(k, k′)N−q = ρ(k − q, k′ − q) (6.3)

N−qNqρ(k, k′) = ρ(k, k′) (6.4)
ρ(k, k′)N−qNq = ρ(k, k′). (6.5)

In the position representation, this means

Nkρ(x, y)N−k = eik·(x−y)ρ(x, y). (6.6)

The master equation for the one-particle density operator ρ(x, y) is then

∂ρ(x, y)

∂t
= −i〈x|[H0, ρ]|y〉 − F(x − y)ρ(x, y), (6.7)

where

F(x − y) = 1

(2π)5

∫
d3q d3k|ν(k)|2nq(nq−k + 1)δ(ωq − ωq−k)(1 − eik·(x−y)). (6.8)

Note that the term involving the coefficient d(k) in equation (5.22) drops out because
[NkN

†
k, ρ] = 0 in the one-particle sector.

Equation (6.7) is of the same general form as earlier results [4–6]. To compare in detail,
we first introduce the quantity

f (k, k′) = m

2π
ν(k − k′), (6.9)



Two derivations of the master equation of quantum Brownian motion 3079

(which appears in the usual Born approximation to first-order scattering). Then, letting
k → −k + q in (6.8), we get

F(r) = 1

(2π)3m2

∫
d3q d3k|f (q, k)|2nq(nk + 1)δ(ωq − ωk)(1 − ei(q−k)·r). (6.10)

The delta function implies that q2 = k2, and we find that

F(r) = 1

(2π)3m2

∫
dqq3nq(nq + 1)

∫
d� d�′|f (q, k)|2(1 − ei(q−k)·r). (6.11)

For nq � 1, and identifying (1/2π2)q2nq dq as the fraction of particles with momentum
magnitude between q and q + dq, we find agreement with the careful derivation of Hornberger
and Sipe [8], which in turn agrees with recent experiments which measure the decoherence
rate [24]. (Hornberger and Sipe corrected erroneous numerical factors in some of the earlier
derivations [4, 5], but the qualitative and order of magnitude predictions of these earlier works
are correct. See also the cross-check of Adler [26].)
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